Lacunary Möbius Fractals on the Unit Disk

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on functions on the unit disk

As usual, R denotes the real numbers, Z denotes the integers, and C denotes the complex numbers. Thus each α ∈ C can be expressed as a + b i, where a, b are real numbers and i = −1. We call a, b the real and imaginary parts of α, and denote them Reα, Imα, respectively. If z is a complex number, with z = x + y i where x, y are the real and imaginary parts of z, then we write z for the complex co...

متن کامل

Radial balanced metrics on the unit disk

Let Φ be a strictly plurisubharmonic and radial function on the unit disk D ⊂ C and let g be the Kähler metric associated to the Kähler form ω = i 2 ∂∂̄Φ. We prove that if g is geucl-balanced of height 3 (where geucl is the standard Euclidean metric on C = R), and the function h(x) = e−Φ(z), x = |z|, extends to an entire analytic function on R, then g equals the hyperbolic metric. The proof of o...

متن کامل

On random points in the unit disk

Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the unit disk selected uniformly and independently at random. Define G(λ, n) to be the graph with vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most λ. We call this graph a unit disk random graph. Let λ = c √ lnn/n and let X be the number of isolated points in G(...

متن کامل

Rational Chebyshev Approximation on the Unit Disk

In a recent paper we showed that er ror curves in po lynomia l Chebyshev a p p r o x i m a t i o n of ana ly t ic functions on the unit disk tend to a p p r o x i m a t e perfect circles abou t the origin [23]. M a k i n g use of a theorem of Ca ra th6odo ry and Fej6r, we der ived in the process a me thod for calculat ing near-bes t a p p r o x i m a t i o n s rapid ly by finding the pr incipal...

متن کامل

On the Discrete Unit Disk Cover Problem

Given a set P of n points and a set D of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in P is covered by at least one disk in D or not and (ii) if so, then find a minimum cardinality subset D∗ ⊆ D such that the unit disks in D∗ cover all the points in P. The discrete unit disk cover problem is a geometric version of the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: 2073-8994

DOI: 10.3390/sym13010091